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PREFACE

Th. multiple arc trajectory optimization is one which constantly

confronts Air Force flight vehicle systems , both in air-to-air and

air-to ground operations. The most difficult of proble ms here includes

both bounds on state and control, and yet it cannot be avoided because

this is , in fact , the situation in Air Force flight vechiles . This

report appears to represent one of the most important pieces of work

presenting results of import ance both for flight control because of the

greatly effecient algorithms developed in this report .
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SECTION I
INTRODUCTION

Th. peat decade has seen consid.rabl. progress in techniques for

optimisation of nonlinear dynamical systems. The d.v.lopment of large

digital computer s coupled with the interest in optimal control theory,

particularly in opt imising of spacecr aft trajecto ries , has inspired a

large volume of literature devoted to both the mathematical theory of

optimal processes and the methods for obtaining solutions to these

problems. Nevertheless , from the computational standpoint the class

of control problems with constraint state variables baa scarcely been

considered, although these types of problem s often occur in engineering

practice. For example, the velocity of a vehicle may be limited by

structure breakdown or a motor may be overloaded to prevent safety and

reliability of operation. Bryeon, Denhem and Dreyfus (1), (23 and

• Starr (33 have treated this class of problems using the steepest

descent technique and a suitable combination of various non-gradient

techniques, respectively. Others (2), t k) have reduced the constraint

problem to unconstrained status by introducing the penalty function in

• place of the constraints on the state variables.
• 

I Th. method of steepest descent is excellent for finding an

approximate solution quickly , but it often exhibits very slow

convergence, whereas other techniques frequently face the problem of

computational stability in the solution of the two-point boundary value

problem. It is hoped that the method of conjugate gradients would

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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offer an improved and more efficient computational method, which is the

objective of this study.

For completeness , acme basic concepts from functional analysis to

be used in the sequel are gi ien in Section II , and a review of the

conjugate gradient method of Reetenes and Stiefel for linear operator

equations and the extension to nonlinear operator equations are given

in Section III with emphasis toward control applications. Section IV

discusses the class of control problems to be considered. The

computational aspect of the state variable constraint control problems

is presented in Section V. The application of the method of conjugate

gradients to this class of optimal control problems is discussed. An

algorithm is given showing the construction of the sequence of control

functions that extremize a given performance functional. Sections VI

and VII consider tw o practical engineering applications: 1) a

• minimum time problem in two dimensions with the constraint on the

• state variables being a circle, and 2) a re—entry vehicle problem

with altitude constraint for which the range is to be maximized. A

comparison of the rate of convergence with the method of steepest

descent is given in the first problem. Th. results showed that the

• 
• method of conjugate gradients provided a higher rate of convergence,

but not as rapid as for the cases without state variable constraint.

2

I

• 
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SECTION II

BASIC CONCEPTS FROM FUNCTIONAL ANALYSIS

Some definitions and fundamental theorems from analysi, which will

be used in the following discussion are given below. Let V be a real
Hu bert space with inner product denoted by <.,.). u, h are elements
in V A function $(h) is written o(~~h~J) jf ..O as IIh~~I .0,

and a function $(h) is written Q(I~h~~) if I$(h)~ < N~!h!I as Ith t~ .0

where N is a positive constant and 1Ih~I = (h,h)~.

Definition 2.1. If there exists a continuous linear functional

0(u) on V such that

• IE(u+h) — E(u) — G(u)hI = o ( ! f h lt )  (2.1)

• as fl~~ ’ i .0, then the linear functional 0(u) is called the Frechet

derivative of E at u and G(u)h is called the Frechet differential of

E at u with increment h.

The higher derivatives are defined in a similar nenner. Denote
the conjugate space of V by V., the space of all linear functionals

on V. Denote the norm on V by I . !t .

Definition 2.2. If there exists a continuous linear operator

• F(u) from V into V such that

~fG(u+h) — 0(u) — F(u)hH’ — o(HhII) (2.2)

aa ~ h !I sO , then the operator F(u) is call ed the second Prechet

derivative of the functional E, end E is said to be twice differentiable.

7(u)h is called the second Frechet differential.

Definitjon 2.~. If the limit E(u+8h~ - E(u) as e-.o exists,

- —  

3 
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and let

6E(u h) • lim E(u+Oh~ - Z(u)

e .~~~o

then 6E(u,h) is called the Gateaux differential of E at u with

increment h. Similarly for the second Gateaux differential at u with

increments h and k,

~E(u ,h ,k) = him 6E(u+Xk~h) - 6Z(u~h)
• x ...0

provided the limit exists.

From the above definitions it can be seen that if the Yrechet

differential exists at u, then the Gateaux differential also exists,

and the two differentials are equal. Although the converse may not

necessarily be true, the sufficient conditions are provided by the

following theorem. The proofs of the following four theorems may be

• found in books on functional analysis such as references (5), (6). 1•
Theorem 2.1. If 6E(u,h) exists in I t u—u0~ I � , i >  0, and if it

is uniformly continuous in u and continuous in h, then the Frechet

differential exists and G(u
0

)h = 6Z(u ,h).

From the viewpoint of studying extremal points in function space,

the concept of Frechet differential is essential, but from the

computational standpoint the Prechet derivatives are often obtained

through Equations (2.3) and (2.4) whenever the conditions stated in

Theorem 2.1 are fulfilled.

Since 0(u) i. a continuous linear functional, by the Rises

representation theorem there exists an element VE(u) in V such that

G(u)h a (VE(u),h)

_____________________ 
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1-
for every h a V. VL(u) is called the gradient of Z at a. Because
F(u)b is a continuous linear functional on V, then

a (Hz(u)h ,h)

where Rz(u) is a continuous linear operator on V. HE(u) is called the
Hessian of E at u. If h is a unit vector, (VE(u),b) may be regarded

as a directional derivative of L in the direction of h.

Theorem 2.2. Suppose that the functiona l E on V has a relative

extremum at u .  It is necessary that VE (u’) • 0, i.e., G(u’)h a 0
for all h in V.

• ~~~~~~~~~~ Suppose that the functional £ on V has a relative
extremum at u’ subject to constraints ~j(U) 0 j al,2,. .,n. Suppose

that V~3
(u) exist and that they are linearly independent. If

VZ(u ’) ~ 0, it is necessary that there exist unique real numbers
- not all zero such that

• VZ (u’) .,~~v$~(u e) (2 .5)

• 
• Theorem 2.4. If the Qeteaux differential ~E(u,h) of a functional

E exists at each point of some convex set DCV , then for any u and

-

~ u+h i n fl

— Eu) a 6E(u+th,h) (2 .6)

for acme t in (0,1), and similar expression holds when E is an operator.

Definition 2.4. The operator F mapping V into V is called

• 
continuous at a V, if for any sequence c~u~) which converges to

• , ~
-;•-
~
-— —•-•—

~~
— •
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i.e., him IIU~~UØ~I a 0, the sequence ’ ?(u~)_ converges to

i.e. , him 1 17(U
n
) — F(u0)II a 0.

n+oo

SECTION III

t4EThOD OF CONJUGATE GRADIENTS

3 1  Historical S~srvey

The method of conjugate gradients was originally deve loped for solving

linear systems of algebraic equations independently by Hestenes and Stifel

[7). (8) in 1952. Hayes [91 extended the method in 1954 to solve linear

operator problems on Hilbert space. Antosiewicz and Rheinbodit [icy in 1962

gave further consideration to the rate of convergence of the method. Fletcher

and Reeves (11) in 1964 applied the conjugate gradient technique in minimizing

positive definite quadratic functionals in finite dimensional space. Daniel

(12) in 1965 gave an improved estimate of the rate of convergence and discussed

F the applicability of the conjugate gradient method to nonlinear operator

equations. In the area of application of this technique to optima l control ,

Lasdon, Mitter and Warren [13), and Sinnott and Luenberger [14) have treated

unconstrained problems with considerable success .

3.2 Linear Theory

(a) Sequence of Expanding Subspsces

Let A be a postive defintie, self-adjoint, continuous linear opera-

tor with domain V a real Hu bert space, and range RC~~. Then there

exists a real number m such that Cu Au) a (u u) for every u in V and

A has a cont~’nuous inverse A 1 whose domain is It and range V. The linear

equation

M i — k  
6 

(3,1)

___  =
• 

--
• ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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has a unique solution h A ’
~k for any given k a B .  Suppose u is an

estimate of h b-u will be referred to as the error , r a k-Au will be

called the residual of u as an estimat e of h, and

Eu) a (h—u ,A(h—u)) (3.2)

is cal led the error functional. Since A is positive definite the
problem of solving Equation (3.1) may be treat ed from the variational
setting by minimizing the error functional in (3.2).

Finding the solution to Equation (3.1) by atnimising the error
functional E in Equation (3.2) using iterative procedures often

involves a sequence of expanding subspacea, i.e., a sequen ce of closed
linear eubepacea B~ of V such that

B C B 1

i:7 5~ 
- v

1
The iterative procedure is the basis of the conjugate gradient

method. Th. following three theorems illuminate the underlying
philosophy of the iterative procedure.

Theorem 3.1. Let B be a linear subspace of V and u0 in V. Then
the functional E in (3.2) satisfies ECu

0

) S Eu0+y) for every y in B
• if and only if 9E(u0

) or the residual at u0 is orthogonal to B. In
partic ular , ECu0) ~ E(u) for every u in V if and only if u0 • h, the
solutio n of Equation (3.2).

The assumption that A 1* sslf-adjoint is not essentia l since fro m the
theoretical point of view the equations Axak and Bx.b, where B eA A
and baA k, *0 is the adjoint of A, are equivalent.

I 

/ 
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Proofs Let y be any non-acre element in 3. Then

- 1(u0) a (y,Ay) + (VE(u0),y)

Hence if VZ(u0) is orth ogonal to B, then

Eu0+y) - 1(u0) a (y,Ay) > 0 ,

or 1(u
0

) £ 1(u0+y) for every y in B. If for every y in B, then for

sny real t

Eu0+ty) a Eu0) + t(VEu0),y) + t2(y, Ay)

which implies that t(~Eu0),y) + t2(y, Ay) 
~ 

0. This expression can be

true for sufficientl y small t only if (VE(u0),y) a 0 or VE(u0) is

orthogonal to B. Finally, if u0 mini mizes I on V, VZ(u0) a 2(Au0-k)
must be orthogonal to V, and hence must be zero. But A is positive

definite , therefore u0 a h.

It is interesti ng to consider a geometric interpretation of the

statement of this theorem. 1(u) a cons tan t defines a family of

ellipsoi ds about h, and the gradient of I at u is orthogonal to the

ellipsoid through u. The linear subsp sce B is a byperplan. through

the orig in, and u0+B is a hyperplane through u0. Suppose it intersects

the ellipsoid ECu) a 1(u0
) a fl. Then there is a region on the hy’p.r-

plane within the ellipsoid so that 1(u) 5 $ unless u0+B is tangent to

• the ellip soid through u0 or VZ(u0) i. orthogonal to subapace u0+B

(see Figure 3.1).

In view of the positive definite and continuity properties of I

and Theorem 3.1, we have the following conclusion.

~~~~~~~~~ Let B be a closed subspace of V. There exists a

unique u0 in B that min imizes 1(u) on B, and (VEu0),y) a 0 for every

y a B .

8
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u0+B

a N

Figure 3.1. A geometric interpretation of Theorem 3.1

a m . .  Let ~B~) be an expanding sequence of closed sub-
spaces of V, and V = tJ 

~ 
Let~~u~)be the sequence of points such

that u~ a B~ and E(u~) = min(E(u), u a B~~~. Then u~ . h as n -b~-

Proof: Since 
~

B
~
) is an expanding sequence, ~ E(u~)j  is a

decreasing sequence, and there exists a real )~ so that E(u.d) a 
~~~~

as n ~ oo. E(u~+ty) ax for any t and y a V; this implies that

• (i1A(h—u~))2 � (x ~_A )(y ,Ay) ,

• - so that for y a Un Um~ 
M~fl

CE(Um)_X 1 + tE(u~)_x~ ?(Un m ~
It(%um

))

But A is positive definite, which implies that (u \ is a Cauchy
aequence. Since Vie complete, therefore u~~~b as n~~ co .

• I Suppose that V ii separable so that there exists at least one

9 

• _ _ _ _
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linear ly independent sequence p,~ in V , so that the finite-

dimensional, and hence closed , linear subspaces B s~~~ ed by

(P0,P1,...~P~_1)forsed an expanding sequenc e w ith UB~ 
• V. As a

practical matter in applying Theorem 3.2 we mus t so lve the ainimir.a-

tion problem

Eu~) a min(E(u),u i B~)

for each n, and th. solution will be expressed as

it

L1 °n?j
j aO

• where the coefficients depend on n. It would be convenient for

this procedure if the coefficients would be independent of it , and this

leads to the following topic.

(b) Conjugate Direction Method

Definition).].. Let 
~m’ 

p~ be non-zero elements in V. If

(Pa,AP~
> a 0, a it

then p~ and ~n 
are said to be A-conjugate or A-orthogonal.

The iteration method in which the sequence of non-zero elements
‘p ) that ii chosen to satisfy the A-conjugat , condition is a

conjugate direction method. The elements 
~~~~~~~~~~ 

may be determined

before the iterative process , or th. element p
~ may be determined at

the ntb it.rstion. Let (
~ ~~jPj ) be an approximating sequenc e to

the solution h. It follows from the definition above that the space
spanned by 

~n is A-orthogonal to the sub.pace B~ spanned by

- 

- 
to

- _________________
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(p0,p1,... ,p,
~
_1), and consequently the coefficients are

independent of it.

Let be a sequence of element, in V whose elements
are mutually A-orthogonal. Let B,~ be the subspace spanned by

(pO~Pi1m,Pfl..l). Suppose that

u0 = 0

(_VZ(Um)~
p)

m 2(p5,Ap5)

then u~ minimizes ECu) on

Proof: It follows from u a tla l+0!a lPm l~ 
E(%)

~Pj)

a (VE(um_i)~Pj)+2
~~.i(AP,~.itPj)~ For j < rn-i, we have (VE(%).P~)

= %-r~j>’ By the definition of a,~, (VE(uj~1)1P~) a 0. Hence
(VE(um)~Pj

) a 0 for ja l,...,.—l or V1(u1) is orthogonal to B~, and

the assertion follows from Theorem 3.1.

It is interesting to observe that if V is finite dimensional,
say it , then utah, and the iteration always converges in finitely

• many steps. Whenever (VE(ua),p) a 0, ~~~~~~~ 
a Urn and the minimum of

ECu) in Ba is also the minimum in B~~1. This occurs, for example ,
when utah. The assumption that the iteration starts with u0aO is not

essential. For if u0jIO, consider the problem A(u+u0) a k; the

iteration 
~~

iui0, u
~~i

a
~~

+t(_V1(um)~p )/2(p ,Ap )3p then converges to

the solution ~ah-u0. As an ismediate consequence of the above l s a

and Theorem 3.3, we have the following.

11 
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__________

~~~~~~~~~~~ 
Let 
(~~~~~~) 

be a sequenc e of elements in V whose

element, are mutually A-ortho~~nal. Let B~ be the subspac. spanned by

and V aUBit
. Let be arbitrary, and

~~~ a~’~ rn>
2(p A p )

Then u~ converges to the solution h.

Cc) The Method of Conjugste Gradients

In the discussion above on the conjugate direction method , the

determination of the sequence of vectors (pn)wss governed only by the

requirement that they be A-conjugate; their determination remains

relatively arbitrary. From the computational standpoint, it is

• convenient and frequently desirable to generate the ps ’s at each

step in the iteration process. The method now introduced is the

• algorithm used by Hestenee that generates a particularly useful set

of conjugate directions. Each direction p~ is generated by

“A-con jug at.-izing” the gradient vector, and thus the name conjugate

gradient is given.
• The iteration is defined as follows:

let u0 be arbitrary

VEu0) a 2(Au0-k)

p0 a -11(u0)

Having obtained u~, 11(u~), and p
~, the iteration js continued

accordi ng to the expressions below .

12
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it 2(p5,Ap~J 
(3 3)

a +

VZ(~~ ) a

(~E(u ),A p )
= (~~ Ap~)

-VE(u 1) +

Theorem 3.5. The quantities defined by the iteration process
above satisfy the following relations:

(Pm iAp
n> = 0 , a ~ fl (3.4)

= 0 , a < it

= 

~
IVE(um ) !I 2 , rn~~ n

(~E(u ) ,VE(u )) = 0 , a ~1 n
- 1 Proof: Prom the defining expressions of ~ and 8 , then it

equalities above may be shown by inductiøit.
• 

• 

Corollary: The conjugate gradient method is a special case of
the conjugrte direction method.

Proof: The assertion follows from expression (3.4) above .
If the set of vector s (p ~P1j ...) generated above spans V, then

the eolutjoit h would be achieved by Theorem 3.3. However, even for
the cases in which the set (p ~~~~~~~~~ not complete in V,
nonethe less , we can still claim that u~ converg es to h. This is an
importa nt and desira ble fact of this method. The next theorem is

13
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devoted to demonstrating that point.

• ~~~~~ ~~ 
as def ined by Equation (5.3) ii bounded above by

~tp~U
2/2(p~.Ap~).

____  

a IPYE(u~)) 2 
+ $~~1,,pn..l

,, 2

a I?vE (u~)II 2

• Therefore,

t ,pn
,, 2 I IVE(%) 11 2 i i ~~~~~

(p i p )  (p ,Ap ) T ” ~7t
- 

• l!pnu
2

a 
~~

~~~~~~~~ Let C a sup(x,x a spectrum of the positiv, definite ,

seif-adjoint continuous linear operator A). Then

Proof: The i.ama follows from the fact that

u Au) (p~~Ap )
~ a 5U~ ~u,u) 

~

I is a strictly decreasi ng function of n i.e.,

*(u~)> I(u~~1), unless the solution is attained at the n~~
iteration.

Proof:

• E~a.)-X(u~~~) a 

~~~~~~~~~~~~

a 
~~~~~~~~~~~~~~~~~~~~~~

14 
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I

I

a or~(p~, VEu~))-~~(p~1 Ap~)
(p ,VE(u ))

p~,Ap~) (p~~A~~)

a .~! (p
~
,VE(u

~
))

? I I V E ( u )~ I 2

The quantity .~! IIVE(u~)II
2 is positive unless u~zb which is the

assertion.

Theorem 3.6. The sequence (u~ )obtained from the above conjugate

gradient method converges to h, the solution to Equation (3.1).

Proof: In Theorem 3.3, we have shown that the sequence(u~)
converges to some element in V say u. (E(u ~))is a monotonically

decreasing sequence that is bounded below by zero, hence it converges.

It follows from the expression in Lemma 3.4

urn ~~~~~ ~ vE(u~)~I2 
= u r n  (E(u~)_E(u~~1))it -a.~~ it

= 0.

But according to Lemma 3.3, o’~ ~~~~ Thus, ~IVE(u~ffl = II2A (h_u~)II

converges to zero as n -e co . By continuity, A(h—u ) = 0. A, being

positive definit e, implies u * h.

3.3 Nonlinear Theory

Aside from the case of linear or quadratic functionals, when the

Frechet differen tial of the functional ii set equal to zero, the

resulting equation is nonlinear . In this chapter we will consider

the extension of the technique discussed previously for the linear

‘S
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theory to solve th. equation of the form

P(u) = 0

where P is a nonlinear operator mapping the real Hu bert space into

itself. Suppose that u i~ the solution to the above operator

equation. Then

0 a P(u’)

= P(u+(u —u))

= P(u)+F(u)Cu —u)+o( I 1u -uI I)

where F(u) is the Yrechet derivative. Therefore, for u sufficiently

near the solution u~, i.e., I Iu’—uI I sufficiently small, we almost

have a linear operator equation with the linear operator F(u). Since

F(u) depend s on u In general, if we generate conjugate directions with

respect to P(u), we can at most assert that any two consecutive

vectors are F(u)-conjug ate , while the other vectors are approximately

?(u)-conjugate depending on how near u is to u .

Assume that the error functional E (or performance functional, as

it is often called in control theory) defined on V possesses the follow-

ing r presentation about u

E(u+h) = E(u)+(P(u),h) +~~<F(u)h,h) + O(11h1 13) 
(3 5)

where P(u) and 1(u) are the first and second Frechet derivatives,

respectively. Suppose that I attains its min imum at U; then by

Theorem 2.2, we can assert that the linear operator P~u) is positive

definite in some neighborhood D about u. We will make the assumption

• • -~~~ - -~~——- - • - -• - • ~~~~~~~~~~~~~~~~~ 
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that 7(u) is seif-adjoint. As we shall see in the following sections
concern ing the application of the method to control problem,, the
operator 1(u) is indeed linear , positive def inite , continuous end

• self -ad jo int .

In view of the results above, we sake the extension of the

~
• algorithe given previous ly as follows:

let u0 be arbitrary

3(u0) a

p = -3(u0)

Having obtained %, p~ and VE(u
~
), the iteration is continued accord-

ing to the expressions below:

U
fl 

+ 

~n~n (3.6)

• 
t 

where is the smallest positive solution a’ of (G(u~+op~),p ) = 0,

G(u~~1) = VE(u~~1) (3,7)

- 

(G(u~~1),F(u 1)p )  
(3.8)

it 
-

~n+l a —G(u~~1) + (3.9)

To determine the value of a’ that satisfies the equation
(G(u~+~p ),p ) a 0 is a difficult task in general, but we will make

the following observations.

~~~~~~~~~~ Let D be a convex region in V containing u svc)~
that 7(u) is positive definite . Then I is a convex functional or. ~~.

Proof: Suppose u3, u2 a D, then by convexity of D,

17
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tu1+(l—t)u2 a D for 0 � t � 3. The rest follows immediately from

Equation (3.5) and the fact that the weighted sum of the squares is

greater than or equal to the square of the weighted sums.

Lemma 3.6. If I is a convex functional on a subset V of V then

(u:1u � N, 14 being a positive constant) c w is convex.

Proof: E(tu1+(l-t)u2) ~ tE(u1
)+(l+t)E(u2)

which implies the assertion.

As the consequence of the above lemmas, we have the following

result.

Theorem 3.7. If 1(u) is positive definite, then the value of a’

that minimizes E(u~+a~~) coincides with the value of a’ that satisfies

(G(u~+op~) p~
) = 0.

We have thus reduced the problem of finding the solution to

(G(Un+O’Pn ) Pn) = 0 to a one-dimensional minimizatio n problem.

Theorem 3.8. Suppose that F(u) is uniformly bounded and

uniformly positive definite in Q, the closure of(u:E(u) ~~E(u0)).

For the sequence(ujgenerated by Equations (3.6) to (3.9), (G(u~))

converges to zero.

• Proof: Since 1(u) is uniformly positive definite in Q, then

there exists positive constants m and N so that B <mI s 1(u) ~~~~
• where I is the identity operator, and B is the null operator. Let

be the value of a that minimizes Eu~+a’p~); then (G(u~+ap~) ~~~ = 0

and consequently

_ _ _ _ _ _ _ _ _ _ _  _ _ _ _  ~~ --• 
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1•
= (G(u + o p ) , O (u + a p ) + p )

=

~~ (u~+ap )~ a -(G(u +* p) ,p )

a lIG(u )I,2
it

~~~~~~~ (u~
.
~~~ ) . (F(u~+op )p ,p )

< f f l I~~II
2

whenever u~+ap~ is in Q. Since

~~ (u~+c,p~)J a 0

therefore

aj 4tt p~ t I 2 
>

Pros Equation (3.9) and the fact that the consecutive elements in the
sequence (p3 are 7(u)-conjugate thus

-

~

and v4~~ .VM2. Prom

. Eu.~).a(G(u~),p ) + 

~
.

fox some t ~ (0,3], for a~~

‘ u~).~I IO(u~)t ,2 
+ 

~ 
~,214, ~p~I 2

+4~,2~f ~~~~~

• —-~~~~ -1~~~~-~~~~~- -~~--‘ -- —•-
~~~~~~~~ -~~~~~~~~



In particular , consider ~ • a,14, then

‘~%.i~ ~~ E(u~ + 
~~

~~
Z(u

~
) _ !
! I I 0(u ),~2 +~~5~

~~E(u~) 
~~~~~~~~~~~~~~~ II 0(u~)tI

2

Therefo~o, (.~(u~)) is ~ monotonically- decreasing sequence, and

hence convergent with the assumption that 1(u) is bounded below.

0 as it e~~ implies that ?Ia(u~)I I .~ 0 as n ~~oo

As a consequence of the uniformly positive definite property

of 7(u) in Q, and supposing that Q is compact , we then have the

following result.

Theorem 3.9. The sequence (u~)convergea to a unique element

u’ in Q, the solution to the minimization problem.

3.k Remarks

(a) In finding the value of a’ that minimizes E(u~+o~p~), we may
use the expression a’ given in the linear case , namely,

(0(un)~pn)
a’ - i~P~,1’(%)P~) (3 ,10)

as a first order approx imation to guide the initial search. The
• quantities p

~, 
G(u~) and F(u~) are already available in the

computational process, thus the evaluation of a does not involve much

work. For most problems, it is expected that this apprcxi~ation would

get better as u~ gets closer to u , for then the v~otors would be
closer to mutually 7(u’)—oonj ugate.

20
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(b) Theorem 3.8 indicates that it is desirable to select the

initial estimate of the solution u0 such that the second Fr.chet

derivative of I at u0 is unifo rmly bounded and uniform ly positive

definite. We may use this fact as a guide to select the initial

approximation.

(c) In optimal control with state variable constraint applica-

tions, the set of admissible controls (this term will be made precise

later) in general will not form a linear aubapace nor even meet the

convexity hypothesis in the discussion above. For the problem in

Section VI, the admissible control set possesses the necessary

conditions being convex, while for the problem in Section VII it does

not. The modifications made to obtain convergence in computation to

the desired solution are presented in detail there. The convergence

is along the expanding sequence of sets (a~ fl Q)where Q denotes the

set of admissible controls.

(a) If is set equal to zero in each step, the direction of

search p2,~ would be along the negative direction of the gradient of E

at 
~~~~

, and if is selected so that the performance functional is

minimized, then this is the well-known method of steepest descent. It

• is worthy to note that in the method of steepest descent, the

performance functional is not minimized in a sequence of expanding

subepaces as it is in the conjugate direction methods.

(e) At any step of the iteration process, we can start anew wtt~.

• only a small amount of labor involved, keeping the approximation last

obtained as the Initia l estimate.

(f)  Other variations of the conjugate gradient algorithm when

-*  21

_-

~  

- — -__I 
- .~~~~- -.

-
-- 



-- 

-

1(n) is independent of u may be found in the pipers of aestenes and 
- •

8tiefe3. (7), (8) wher. the development is presented in great detail.

SECTION IV

ThE CLASS OP CONTROL PROBLEMS TO BE CONSIDE RED

Our ultimate goal is to apply the technique develope in the

prev ious section to solve the class of contro l problems which we form-

ulate below . Supoose that the dynamical syste m is governed by the

diffe rential equation

d 
• f(~,x)

(4,1)

where x is a real n-vector for each t , called the state of the system;

u is a real rn-vector for each t , called the control vector ; and f is a

real n-vector for each t, that is twice continuously differentiable in

its arguments (t will be interpreted as t ime with values in En). Let

x(t ) be the initial state of the system , and let it be desired to

transfer the system from the given initial state to some final state

lying on a smooth hype rsurfac e

• 0 (4,2)
where the terminal tine tf is not fixed, while the states are confined to

whithin a closed region in B~ given by the inequalities

~~~~~~~~~~~ ~~~~~ k—l ,2 ... ,N (4 3)

where an n-time continuous differ entiable function of x. We will

calila control u an element in the Hu bert space of piecewise continuous

functions on [t0 .  t f] with inner product defined as

denotes an m-diaenlional Buclidean space

22



tf
Cu1,u2) a u1(t)u2(t)dt

admiss ible if the corresponding trajectory in Z~ does not violate the
state constraints above for all t t (t0,t~). Denote the class of
admissible controls by Q. Let the performance functional be

tf
1(u) a W(x (t

f)) + 5 L(u,x)dt (4.4)to

or alterna tively as in the form ulation of Mayer,

1(u) a $tx(tf))

a function of end values of the states, where x(t f ) is an augmented
t (n+l)—vector. In the following x will be used to denote either the

n-vector or the augmented (n+l)-veotor without further specifying
whenever the situation is clear from the context.

The problem’s objective is to find the control u in Q that
minimizes the performance functional while satisfying the conditions

(~.l), (4.2) and (4.3). We will make an assumption that there exists

a unique so lution to this minimisation problem.

23 
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SECTION V

CCNPUTATICNAL CONSI~~ ATICNS

5.1 Nomenclature

For each control u in Q, there corresponds a trajectory in In.

It may consist of two types of arc .. The portion of a trajectory in
*

which the states satisfy

< 0 k.l 2,..., N (5.1)

will be called an interior arc, and the portion that satisfies

~~~~ 
= 0 (5.2)

for some k, kal,2,... ,N will be called a boundary arc. A trajectory

may comp rise entirel y a boundary arc, an entirely interior arc, or a

combination of interior arcs and bound ary arcs as shown in Figures 5.1

to 5.3.

~~~~~ ~~~~~~~~~~~~~~~~~~~~~
$ x a O 

rface

Figure 5.3. Trajecto ry comprises only boundary arc

----
~~~~~

-
~~~~
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~~rminsl surface *(x) a

Figur e 5.2. Trajectory comprises only interior arc

gur~~cc

Figure p.3. Trajectory comprises interior arcs and boundary arc

25

___________  ______________



The trajectory corresponding to the control u $ Q that minimizes the

performance functional is termed the optimal trajectory. Consider

t f ~ t0~ i.e., time runs forward. The smallest value of t , say

for which x(t1) lies on one of the constraining surfaces g~(x ) a 0 is

called enteri ng time , and x (t 1), the enteri ng corner. The largest t ,

.*j t2, for which x(t2) lies on the constraining surface gk
(x) a 0 is

called exit time, and x(t2), the exit corner. For simplicity in the

• discussion below, we will consider only the cases in which the optimal

trajectory has at most one entering corner.

• 5.2 Control on the Boundary Arc

For th. period t t (t11t2) along the boundary arc, the states are

interrelated by

gk (x) a 0 (S.3~

It follows from the fact that along the boundary arc, the constraint

function must vanish identically, which implies that

a 0 , jal,2,... (.c.4)
dt

The first time derivative of g has a very simple geometric interpreta-

tion. It states that the boundary arc is tangent to the hypersurtace

g(x) a 0, or normal to the gradient of g. That is,

a (
~

g
~ ~~

) (S,5)

• The control u will be determined according to (5.5) if u appears

If two or more constraints are involved for t a (t~ ,t,) ,  the argument
is similar, and the subscript It on g will be droppid In subsequent
discussion.

26
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explicitly in the expression. If it does not, we nay consider the
second derivative or higher derivative. so that u will appear explicitly
in * 0. If the system is contro llable (15), the existence of a

dt
smallest integer N, the order of the derivative of g for which u appears

explicitly is assured. Fran (5.4) in particular for t a t1, we have

gtx(t1)3 a (5.6)

.
~~~ 

(x(t1)) a 0 jal,.. .,N—l (5.7)

It is worthy to note that Equations (5.6) and (5.7) along with the

control u satisfying

(5.8)

imp3.y that

a 0 juO,1,... ,N (5.9)

for allta(t1,t2).

We will make the necessary assumptions such as g has no singular

point, I... Vg(x) j~ 0, to permit a possib l. unique solution for u in

terms of the stat.. in (5.8). Actually, we need only to make such

assumption s slang the optimal boundary arc. But from the computational

• 
point of view , in psrticulsr using the conjugate gradient technique,

3, since we have no advance hnowl.dg. of the wherea bouts of the boundary

arc on the constraint surface, the above provisions are necessary .

3.3 The Perturbation ~~uationa

Suppose that n S Q is the optimal control of our twLwisatiOfl

• problem, and that x is the corresponding optimal trajectory. Consider

27
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u a u +eb s Q, where C is a real number end h a piecewise continuous

function. Let

x (t ) • x ’(t )+~~(t) (54 10)

be the trajectory generated b~ u. It follows from (5.10) that we have

dx(t) 4x (t) da..u~~..— a dt (5.11)

Since x is a solution to (4.1),

~~~~~~~~~~~~ a f(x(t),u(t))

=

a f (x (t ),u’(t ) ) +~~I~ 
Gz(t) +~~~~Bh(t)+o(e) 

(5.12)

where is the Jacobian matrix of f with respect to x , is a row

vector. The symbol I • indicates that the quant ity is to be evalu ated

along the opt imal trajector y. It follows then from (3.10) and (5.12),

and ignoring the factor o(8) (this will not alter th. ult imate outc ome

when the limit of e approaches zero i. taken), that z is a solution to

the linear differential equation

da ~f , (5.13)

and

.Ct 0
) * 0 .

On the boundary arc, the control and state. are further subject to

4ao .  D.note4by o.

28
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G(x(t),u(t)) a

a G(x ,u )+$ (~4,,z> + ~Ib+o(e) (5.14)

Again, ignoring the factor 0(8) we have

+ ~~~•h 0 (5.15)

a~ 0, then it follows from (5.13) and (5.13) that

dz ~f, ~fi r~G 
-1

a — ~~~~~ ~~~~) (~~~~,z) (5.16)

on the boundary arc.

3.4 The First Prechet Differential of the Performance Functiona].

Assume that the performance functional £ as defined below
satisf ies the cond itions in Theorem 2.1, then we may evaluate its

(

frechet der ivative by formula (2.3), and ultimately obtain the gradient
of S. Let X be a piecewise differentiable n-vector-valued function of
t a.s yet unspecified. We will call )(t) a coatate vector. Let

a (X ,f(x ,u)) (.5.17)

and call the ecalar function H the Hamiltonjan of the system. Treat-

ing the conditions (4.1), (4.2), (5.6) , and (5.7) as constraints,
consider the performance functional S at u * u+~~ $ Q.

5(u) a $(x(t f ))+*tx(t f ))+(~,stx (t1)]) +J E x ,X,u -~~, ~~))dt (5.18)

where ~ is a constant N-vector and

— 
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•1 gtx(t1)1

$tx (t1fl 
1!x(ti)) (5.19)

for convenience. Making expansions about the optimal trajectory,

$(x (t f )) a ~tx (t )) • (~~I.,
dx(t))t + o(9) (5 .20)

r

•tx (t f )) $(x~(t~)) + 4tI.,dx(t))
~ 

+ 0(8) (5.21)

S(x (t 1)) a S(x (tj )) . •t da(t1) : o(8) (S.fl)

For the functional S at u , we have

E(u ) a (x•(t;))+s(x’(t;)1+(ii~s(x(t~)) + 

I: 

tR(x ~,~•,u~) .(X• ,
~F

Yjdt

(1.23)

Therefore,

E(u)—E(u ) = 

~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
~~I.t

)da(ti)

+~~~~(R(x , X ,u)— R(x~,)~•,g~)— O(A , .~~))dt+o(O) (5.24)

To take into account the possible discontinuiti.. at the entering and 4

exit corners, the above integral will be written as three integrals

over the intervals t t01t1), (t11t2) aM (t2,tf 3. After integration

by parts ii performed, (5.24) becomes

30
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S(u)—B(u ) a (!~ I ,dx(t))t +(
~~I ,

,dx(t))t +(W, ~ f dx(t1)>

+8(X(t0),z(t ))—8(A(t ),~ (t ))+O ~ ((~~~~~
I
,$)l (~~~~~~I , z)+ ~~~~h~Jdt

~~ r~Gi
’
~ ~~ ~t

+ 

~~~~
1T3 I ( ~~i ,Z,~/dt

+8(X(t~)~Z(t~))..8(X(tf
),z(t

f))+8 ~~+t ,z)+(~~I , z)+ ~~I h1dt

+ o( e) (5.25)

But dx(t~) = 8z(t~) ~~~~~~ + o(6) (5.26)

where = t~—t~ , 3=1,2,f

and z(t0) = 0

Thus

dx(t )
S(u)—E(u’) a 

~ ~~
I
*t~

_A (t
f)~

dx(tf))+(;4~
(tf)t dt

dx(t’)

dt 
T
2
)

dx(t) ix(t4) ++~ ctp. dt T2)—(~(t~), dt Ti)+(~~I~~~
_X (t

i)+A(ti
)
~

+8 
~~t 

,z( .~~~,s)+ ~~~h)dt
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+8 ~~ ~~~~~~~~~~~~~~~~~~~~~~~~~ dt

+ o(O) (‘E.27)

We are now goi ng to impose the following conditions on the coetate ).

(a) Demand that )4 be a solution of the differential equation

dA ~E (5.28)

for t e [t 0,t1) and t £ (t2,tf]. 
• 

-

(b) On the boundary arc, for t $ (t11t2), require X to satisfy

+ .~L ~ + (~ ,x)t~ ] ’ 
~~ = 0 (5.29)

(c) At t1, t2 and tf. demand that

• x(t~) = A(t~) +~~I i~ (.5 30)
t1

= 

~~~~~~~~~~~~~ 

(.5.31)
1 1

— + (5.32)

a ~~~~~~ (5.33)

A(t~) a ~~(t f ) + ~~(t f ) 
(5~~4)

~
‘The symbol after the quantities ~~~~~, etc. will be deleted
henceforth. * X

L - 
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Zquations (5.31) and (5.33) indicate that the Hamiltonian is

continuous at the enteri ng and exit corners, and Squations (5.32) and
(5.30) show that the costate is continuous at the exit corner while it
i. discontinuou, at the entering corner with a jump equal to
With the above conditions, the Prechet differential is 1

t], tf
0(u’)h a hdt + 

~~ 
hdt (5.35)

end consequently, the gradient of the performance functional

• VE(u) = ~~(x ,7~,u) (5.36)

for t s (t0,t~) and t e (t~~,t f
1. i -

5.5 The Second Prechet Differential of the Performance Functional

Suppose that for the control u = u +Oh e Q, the corresponding 
I 

-

trajectory is

x(t) = x (t) + ez(t) + 82w(t) (5~’37)

instead of (3.10), where z again satisfies the differential equation
(5.13) with z(t ) = 0 and w(t ) = 0. In view of (p.37), let us now

re—examine the expression (5.24). The expression (5.20 ) becomes

• $tx(tf 11 = $tXs(t;))+(.~4(tf),dx(tf))+ ~(dX(tf), __4ctf dxtf >+o e

(5.38)

where
dx(t )

dx(tf) a O5(tf ) + •
2w(t ) + ~ dt ‘f (5 39)
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• Similar ly , expressions (3.21) and (3.22) become

$tZ(t
f
) Ja$t X ( t~~)1+4~~(t f

),dX(t
f
))+ 3(dx(tf),4(tf) ,dx(tf))+o(0

2)

(5.40)

and

Stx (t 1) IuiStx *(t~)3+ .~~(t1)dx(t1)+ 
.
~(dx(t1

),.—.~dx(t1))+o(8
2) (5.41)

Th. integrals in (5.25) become

- ,~~~~ +C2w~~dt a —0(~(t~)1dx(t1)+ 
~~ 

r~)

+ C L ~~~,z>dt + 02 
~ ~~~,w>dt + 0(82) (5.42)

H 
tf

- +(
~, (k+B2ui))dt a S(A(t~),dx(t~)+ dt ~2

>

2
dx(t ) (tf (tf

- 0(A(t~),dx(t~)+ dt
2 2

+ 0(02) (8.43)

t +

— ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ dt

dx(t ) t2 ç t2
— e(~~(t ;),dact

2
)+ —‘~at~” ‘?“ L+ ,a)dt+82 

J + (~~..)dt .o(e2)

(5.44)

and

~~~~~~ 

_______ 
_ _ _ _

• 34

_______________ 
I -

— — • - -~---— -~ -~~ - —U • —_ ~ •—



— •- -- --—- - -

~~~~~~~~~\

I

I ~
2H

+.
~~~ ( , o e 2 

(5.45)

Fran Equations (5.38) to (5.45) ,  in view of the conditions imposed on
the coatate ~ and that = 0 along the optimal trajectory, we have for
the second ?r.chet differenti al

(h,?(u)h) = (~~~~(t ~~~ ),
.
~~!4 Z ( t~~~ )) + (z(t~),.~4 2(tf))

t t / ~
2H ~~~ H1 \2 ~~l~~~ f , z  

~~~ 
Z

+1(z(t ),4 z(t ))+ I + 1 / ‘)dt1 J 
~ ~~~~~~~~ /t0 t2 \ h  ~~~~~~~~~ 

h
/

~S..46)

3.6 An A~proxjmation for the Hessian

The gradien t of the performance functional fo llows immediately

from the fi rs t Frechet differen tial . However , some further steps are

necessa ry from (3.46) to obtain the Hessian of B which is to be used
in the conjugate gradient algorithm. Recall that z is the solution

to the linear time-varying differential equation

de ~f , ~f ta + Et h  (5.47)

for the unconstrained region given by

I 35
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t I
aCt) a L(t~t~)s(t

3
) + L(t ,i) ~~(r)I h(r)d, (~~4$)

where L is the fundamental matrix end t~ a t0~t~. s(t0) a 0, but

as yet is not 1o~own. Writing (5.1.8) as

z.Th (S.4a)

and letting
[Ti (5.50) P

• W a 1IJ

Formally, we have

/ ~ ~H% \ a~ i a au \
• ~ —

~ 
C 

~~~~~x 
~~ a Wh, %

~
X

• 
~ ~~ b~R I ~ ~H

\
h~~~~~~~J . ~~ h

,

/ b2H ?

W~
’)

• \ a I

- 

(5.51)

• a2 a2
• (s(t ~) ,...4I C(t f)) a <Th,_4 Th)tax ’ ax f

a (h,T”4Th)t 
(5.52)

and similar expressions for the other factors in (5.46). Th. second

denotes adjo int .

- 
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~
’
~ Frechet differential now becomes

(h,T(u)h) a (h ,T’~ “4  tf 
+ (h ,T~ ~~ II Th)tf

Ct1• .. i a 2s ~• - + (h ,L ! Th,~ +

ax 1 to

t /Ia2n a an
ç f 
‘~~r~ ~

)
- 

~t \ Ja IaH~ ~~ 
Wh dt (S 53)

2

from which we can obtain the Hessian of the performance functional.

Since (5.47) describes a time—varying linear system and the initia l
state is either at rest , z(t0) a 0, or .(t2) which is small, (when u

• is sufficiently near u’), a “small” b will generate a “small” z (the
.2

converse is not necessarily true) and the term (h,~-’~ h) is the “most ”
- -

• dependent on h in (5.53) [15). Furthermore, A_~ i, positive defini€~
• [is], and therefore, by continuity there exists a region about u~ for

which is positive definite.

• In the discussion in Section III, Theorem 3.8, the only require-
• sent on F(u) was that it must be uniformly positive definite in the

neighbor hood of u’ to assure convergen ce of the iteration process

(assumi ng also that the controls in this neighborhood are all
admissib le). Hence we may conside r constructing a set of search
directions 4, p~ )oonj ugate with respect to ~~ or loóklly conjugate
to be precise since —~~ depends on u in general. This simplification

— -- _ _  _ _  •~~~~~~~~~~~ -_ I 
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provides a considerable reduction 
in computation time and programailil.

and we wil l use his *pproXim&tiOfl below in our computations. 
-~ 

(

5.7 Computation for the Costate

In order to obtain the Rsmiitonian at the nth iteration on which

the gradient and Hessian are based, we oust have the stat . variable

and the costate in addition to the control u~ chosen for that iteration.

Since the state variable is continuous and the initial condition is

given , solving Equation (4.1) is a straightforward problem, provided

the estimated quantities t1, t2 and tf are settled. We will elaborate

this point in the next subsection. On the other band, the determine.

tion of the costats requires more consider ations . Sinc e the boundary

condition for the coatate is specified at the termin al time t~. and the

coetate is continuous at the exit corner , thus X(t) for t • (t~,t~3

may be determine d simply by solving the differential equations (5.28)

and (3.29) backward in time using the latest est imated control and

state variable. At the enter ing corner , when t a t1~ the coetate may

be discontinuou s. In princ iple , it is possible to deter mine

~&, t1, a total of N+n+l unknown quantitie s , from Equations (5.30),

(5.31), (3.6) and (5.7) as long as these equations are independent.

Since in any stag. of the iteration process , the time at which the

trajectory reaches the constraint surface t1 15 in general not equal

to t~, hence an exact solution to the above quantitie. is not really

essential provided that some seans are taken so that these qu antities

would converge to the desi red values as the proc ess progresses .

Initially, a trial and error tichniqu e may be used to obtain an

approximation to these quantities . Depending on the problem at band,

38
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frequently some intuition as to the p~*ysioal nature of the problem may
serve as a guid. to the guess and the method by wh ich to improve the
est imate. at each ste p. This is the moat difficult part of the
computation and also one of the most time-consuming portions of the

iterat ion process .

After the estimate of ~( t )  is selected , the costate in the
• remaining portion, for t c tt

0
,t
1
) may again resort to solvin g the

differential equation (5.28).

5.8 Bnter in,g Time and Exit Time

Since the control program is updated at each step according to

(5.54)

the new trajectory may reach the constraint su rface sooner or later
than the previous iteration. In other words, the enteri ng time in
general varies th each iteration, and it is dictated by the control
chosen. If t1’~ is larger than t~~

41), there is no problem. However,

when the opposite is tx-u., then some extension on must be made

• for the time interval (t~ ,t~~
’
~

-
~) such as

a u~(t~’~ )

or- some convenient extrapolation based on u~(4~~) and the rate of
chang. of near ~~~~~~~~ When the estimated sol ution is near the
optimum, signify by relative ly small values of VB(un)~ a sore accurate

determination for the entering ti.. and the enteri ng corner being

S denotes t1 fox the .~~ iteration.

~~1iT;
~~-- —-~~ -- • •-- •~~~~ - - ~~~~~-— --— —• --—-- • • • -~~~



- 
-- - 

~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~

• • 
- w -‘

‘

I

desirable (also the terminal tin, and t.rs41,*l state). Scm. refine—

sent in step size “dt” in solving the differential equation near t1 is

necessary in order to minimise rounding errors.

Concerning the exit time, as it was observed by McIntyre and

Paiewonsky (16), the conditions for leaving the constraint surface

cannot be translated into mathematical statements that can be used in

a computing process. Again, t2 must be estimated and an improvement

made in the estimation according to some means such as to increase t2
when the new control causes the trajectory to violate the constraint

surfac e and decrease t2 other wise. The snount of suitabl e change

involved depends on the problem at hand. Often too larg. a change

may cause the trajectory and some subsequent trajectories to deviate

greatly from the optimal, while making too email changes would waste

unnecessary computing time.

5.9 Determination of Optimum 
~~

It is convenient to divide the stat e variable constraint problem

into thre. parts in the following discussions, and designate them as

Region I, for t t t t 0,t1); Region II, for t t t t1,t23; and Region III,

for t t (t2,tf]. For Region II, the computation for the optimum oi~,

• the value of ~ that minimizes the performanc, functional, or step size

in the search, is not involved since the control on the bounda ry arc is

not fr ’s. to vary. For R.gion III , the optimum ç may be determined by

• using Equation (3.10) as a guide for the search and to compute the

performance functional for selected values of ~~. A quadratic

interpolation may be esp1c~ed to improv , the effecti veness of the

-

~~~ 

- -

~~~~~~

_ _ _
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search and to reduce th. number of values of c needed to be considered.

The computation for the optimum ç for Region I needs further attention.

First of all , due to the presence of the constraint conditions (5.6)

and (5.7), the values of c to be considered must be selected in such a

way that Un + cp
~ 

are admissible controls. This is a one-dimensional

minimization problem subject to some side conditions. It is desirable

to limit the number of values of c to be considered so that the

computational time is reasonable while ss.Lnt~i~4 ng a toler able accuracy

on the approximating solution for each iteration. Secondly, the

evaluation of the performance functional is not as simple as in the

case for Region III since the value of $tx(t f)) will net be known

until the complete trajectory is computed which includes Region III

where the trajectory is as yet to be evaluated. Same equivalent - •

condition at t C t~ instead of ~(x(t~)) sometimes may be used as in

• • the re-ent ry vehicle problems below, or as in the minimum time problem

selecting the optimum ç to be the one that is nearest to the value of
c Equation (3.10 ) provided, while satisfying the condition that

u + a p~ is an admissible control.

3.10 Si~~sry of Computational Steps
• Th~ following diagram shows the step. in the computational process.

Because of the lack of advanced knowledge of the initial values far

• 
~~ ~ C) and p0, some convenient values such as zeros may be used.

5.11 Substitution of Penalty Function for Constraints

In the state variable constraint control proipless we have

discussed above, most of the hardships in computation arise from the

41
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Figure 5. Flow d Lagram fo r the C omputat ional Process

• Select c~, S 0,p0sn4u0
for Regions I and III

IUpdate the control for 
~ 

Determine optimum 0r~Region I u~~1 %*cnPn ‘ 1 for Region I

$ 
_ _ _ _ _ _ _f Compute an~1 store x (t ) IUpdate the search directi

L and t1, Region I

Determine and store Compute ~ for
exit time t n

2 Regions I and III

Determine u2 accordi ng to ICompute the estimates of

L_Eq. (3.8) for Region II for Regions I and Ill J
I 

_ _ _ _ _ _ _

Compute and store 
— 

Lcompute the gradient and
x(t) Re~ion ~ 

asian of the performance

I functiona l

[ 
Determine optimum ~~~ Compute and store )(t)
n~O for Region III for Region I

_ _ _ _ _ _ _  I
Update control for Determine the jump .

• Region III un+l~un
+cnpn of )*. at t1

Compute and store x(t) 1 Compute and store ACt)
and t f t Region III j for Regions III and II

I Set initial values for 
____

[ 
coetate A
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constraint requirements (5.6) and (5.7). The penalty function

technique is designed to alleviate these difficulties . Instead of

attacking the problem dirsctly, it reformulates the control problem

with state variable constraint into an unconstrained problem wherein

the original performance functional i. augmented by a non-negative

• penalty term, I function of the state variable x which increased in

- value with trajectories that violate the state variable constraints.

By selecting a sui table sequence of non-neg ative penalty functions in

the iteration process, it is conceivable that in many cases the

- 
desired solution for the original problem would be achieved as the

limit of the sequence of apprcxim&ting solutions obtained in the
• iteration. Indeed, this technique has been given rigorou s justifica-

tions by various investigators, Moser (173, Russell (183 and

Okamura (19), just to mention a few. For most penalty functions the

intermediate trajectories usually violate the constraint.. That is,
- 

some portion of the boundary arc i. approached from outsid. of the

constraint set.

• An adaptation of thi. technique to suit the conjugat, gradient

computational method i. as follows. A new performance functional is

given by

• • E’ ( u ) = E( u ) + ~~ w(x,n)ds

I. 
C~

~ $tx (t~)) + J n(x,n)ds (5.55 )

• C~

where C~ is the trajectory under the control Un and the non-negative

• 43
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penalty function it as a function of x has the properties that for x

within the constraint set ii has small values relative to $tx(tf)), and

for x outside of the constraint set it has large values that increase

with the distanc e (with some suitable metric) away from the constraint

surfaces. And as a function of n for a given x, it is a monotonically

increasing function for x outside of the constraint set and conversely

for x within the constraint set. The gradient of I’ in general does

not approach zero as the optimum solution is near, due to the added

penalty term w(x,n)ds. Therefore, aome other means must be u~~d to‘C
signal that the~optimum solution is near in the iteration process.

Comparison of the values for $tx (t f )) in consecutive iterations often

fail whenever the performance functional has a “flat bottom” feature.

Often direct comparison of ufl+k with u~ is necessary, such as evaluat-.

• ing the quantity - -

lIun+k
_u
nt ! 

~~ ~n+j_1<Pn+j_l~
1)n+3_1> (5.56)

3=1

To avoid instability in computation which causes the intermediate

trajectories to swing far from the optimal trajectory and may sometimes

cause the approximating solutions to diverge, the penalty function

cannot be too “harsh.” On the contrary, the solution may have a very

slow convergence rate which would make the computation inefficient.

Same compromise must be made so that each iteration brings the

approximating solution closer and closer to the optimum at acme

reasonable rate. After the selection of the penalty function, the

computational step. are the same as the one given above in Figure 5.~I

44
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for the constraint problem except to. the removal of the block.

conce rning legions II and III plus so.. obvious modifications.
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SECTION VI

• A MINIMUM DISTANCZ VITH 7ORBIDD~I R~3ION PROBLDI

6.1 Problem Desor~ption

As an application of the foregoing discussion to the state

variable constraint problems, let us now consider a problem of moderate

computational difficulty so that the features of the conjug at. gradient

• method can be observed with greater clarity. Suppose that among the

planar curves joini ng the point (~,l/k) and some point on the parabola

• with it. vertex at the origi n while avoidi ng a circular region as

shown in Figure 6.1, it i. desired to find one that minimise the length

of the curve. The control version of this problem would be to find

the time-optimal control for a piecewise smooth path satisfying the 
•

specified conditions traversed at a constant speed, where the control

Terminal surface Forbidden region
x1+x~aO

Figure 6.1. Geomet ry of the minim um distance problem

46
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variable u is taken as the angle formed by th. tangent to the path and
the negative x1-axis (see Figure 6.1).

This proble. will be solved using the conjugate gradient method

two ways. First, the computation will be carried out considering the

constraints directly and then employing a penalty function to convert

the constraint problem to an equivalent unconstrained one. Finally ,

another computational technique, the popular steepest descent , is

studied with the same considerations given as in the first case of the
- 

• conjugate gradient method.

The performance functional to be minimized is

~

‘

~tf

~~~

— J dt (6.i)
to

• The system dynamic. c&~z be written as

dx~

dx2

• 
whe re th. consta ntkwill b. taken ss unity in the sequel for

simplicity . Letting t0 0, the initial conditions are

• 47
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• X
l

(O) hh l+

x2(0) 1/1. (6.3)

x3
(O) = 0

6.2 Formulation for Numerical Computation Using Constraint. Direct1~
The Hamiltonian associated with this problem is

H(x ,7~,u) = —X1 cos u + sin u + (6.1.)

• and therefore the co.tate equation along the interior arcs, or Regions

I and III , is

• dX (6.5)

In view of Equation (5.34 ) and that 0(x) ~ -x3 and $(x) = x1+4, at

the terminal time tf

= 1

A2(tf) = 2x2(tf) (6.6)

X3
(tf) = —l

According to Equations (5.36 ) and (5.53), we have for the gradient and

Hessian of the performance functional , respectively,

VE(u) = 

~l 
sin u + 

~2 cos u (6.7)

F(u) =~~1c o e u - X 2 sin u (6.8)

On the boundary .rc , or Region II , the control is required to

maintain the trajectory so that Lt will lie on the circle

(x~—2)2 
+ 4 = 1, hence
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uCt) . ~~~~ x2(t)

or

u(t) . sin~~(x1(t )—2) (6.9)

Using Equation (5.28), the costate equations for Region II are

dA1
~ .-=- cos uO1 sin u +A 2 co.u)

dA
a sin uO1 sin u + A2 cos u) (6.10)

dA
~~ 1 a O

• By Equation. (5.30) and (5.31) , the jumps of the coatate at the entering

corner are governed by
• A1(t~) * A1(t~) + 

~~ 2(x1(t~)—2~

. )
2(t~) + i&2x2(t~)

• (6.11)
A3(t~) a

A1(tp + A2(t~) 
dx2(t~) 

z X1(t~) 
dx1(t~)

+ A2(t~ ) 
dx2(t~)

• and from which

A1(t~)t—x 2(t1)+co. u(t~)) + )
~2(t~)(x1(t1?-.2-sin u(t~)~ (6.12)

2(tx.~(t1)—2 )cos u(t~)-.x2(t1)sin u(t~))

It is worth observing that in the iteration process , precaution must

be taken to avoid overflow. in comput ation since the denominat or of

(6.12) say vanish when the approx imating traj ector y is tangent to the

I_ _ _ _ _ _ _  
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circle at t1. When this occur., the numerator vanishes also. In view

of the limiting processes involved in Equation (5.25) ,  we may therefore

• apply L’Hospita l ’ s rule to Equation (6.12) and obtain

1 + + + +
II a ~ t— A ,3(t1)sin u(t 1) — A2(t1)cos u(t1))

After a control ii chosen, and the initial condition. (6.3) are given,

the differential equation (6.2) can be solved in a straightforwar d

manner. To be able to evalu ate the gradient and the Hessian of E, the

costate in Region. I and III i. needed. The values of the co .tate in

Region III are clear from (6.5) and (6.6). By solving (6.10) backward s

from t2 to t1, we have X
3
(t ), j=l 2,3. Through Equation (6.11),

jzl,2,3 may be determined, and consequently the values of the

costate for Region I obtained.

The set of admissible controls Q consists of controls that produce

trajectories starting at (4,1/4) and terminating at some point on the

parabola x1+4 = 0 avoiding the region (x]-2)
2 + 4 < 1. If v and w

• are admissible controls with corresponding trajectories C1 and C2 so

that the forbidden region is not in the interior of the region D

bounded by curves C1, C2 and x1+4 a 0, then for 0 ~ a � 1, the control

av+(1—a)w would be admissible since the resulting trajectory lies

entirely in D. Hence Q is convex, and according to Theorem 5.8, if

the control selected for the initial iteration is in the neighborhood

of u’ within which the Hessian of E is positiv, definite , the

convergence of the iteration process is assured.

• 6.3 Formulation for Numerical Computation Using Penalty Function

Let us now examine what modifications must be made when the

I 

~~~
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penalty function ii introduced so that the problem with state variable

constraint become. an unconstrained problem. Let

w(x,n) a .0lt(x 2)29 ) ~~~ (6.13)

- where

• 1’~’ 1�~n<l0
• A(n) a (~ 14+2(11-10), 10 � n 

< 20

34+4(n-20), 11 �20

As n becomes large, the contribution to the performance functional

along the trajectory exterior to the circle is ,a11, and n(x,n) is

positive everywhere except for one point , ~1 a 2 and x2 a 0, which is

zero. Hence ~ possesses the desi red characteristics stated in the

• 
~ • previous section.

The new performanc e functional to be minimized is

• E(u) a _x
3
(tf)

-

• 
~ • (tf f tf
- a — ~ dt + I i,(x ,n)dt (6.14)

• Jo

The equations describing the system dynamics (6.2) remain the same

except for the last expression which becomes

a 1 — i~(x,n) (6.15)

The initial conditions for the states ~~~~ again given by (6.3). The

• new Hamiltonian is

• E(x ,A,u) . Co. u + A2 sin u + ).,(1—w(*,n)1 (6.16)

• Si

- - 
-_ -
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• and the oostate equations are

~ra 5vç

•~t~~= .17

~~~~~ a O

with the terminal conditions as given by (6.6). The gradient and the

Hessian are again given by (6.7) and (6.8). Since there are no

constraint conditions involved , the computer prog ram becomes

considerably simpler. Any piecewise control having the corresponding

trajecto ry satisfying the initial and terminal conditions is an

a~~issible control , and Q is again convex.

6.4 Computational Results

Many different estimated controls have been selected for the

initial iteration in the course of studies for computation as a

constraint problem and as an unconstraine d problem using either the

conjugate gradient method or th. method of steepest descent , but only

one is presented below in detail for each way of solving this problem

• sinc e the converg ence characteristics are similar for any estimated

control for which the iteration process converges.
• Treating the problem as a constraint problem, the following

initial estimates are used

• 
u0( t ) a .~~t ,

.1+.05 sin lOt, t2 � t .� tf
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Th. change in 0, 60 is made according t~ the following:

Ci) If the trajectory under th. new estimated control does not

violate the constraining circle in the kth iteration , then

1—.i , k <8
80. ~~—.01 , 8 � k � 1.5

L °°°5’ k>13

(ii ) If the trajectory under the new estimated control violates

the constraining circle as shown below , where A is the point where the

trajectory leaves the circle in the (k—l)~~ iteration and B is the last

intersection of the trajecto ry Ck under the new control and the circle ,

then

80 a length of arc AB

\

\

Ck_l I I \.~
0k-l I 

‘
‘

B

Constrain ing circl e

Figure 6.2. Trajector y Ck violating cdnstraifl iflg circ le
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Treating the problem as an unconstrained problem , the initial estimate

u0(t) .1- .kt

The fourth order Rung.-JCutta method was used in solvi ng the

differential equations with step—size dt a .01, except for the small

intervals slight].y before the trajectory intersects either the terminal

curve x1+4 = 0 or the constraining circle, where dt a .0002.

The computed results are shown in Figures 6.3 to 6.11.

Comparisons are made between the different approaches of solution

whenever possible. In the following, whenever there is no mention as

to whether the solution i. obtained by using constraints directly or by

using a penalty function it is understood that the first is used.

Figures 6.3 and 6.4 , respectively , show the approximating controls

u
11
(t) for various n computed by the conjugate gradient method and the

corresponding trajectories. The values of the performance functional

vs. n are given in Figure 6.5, and the gradient . of the performance

functional as a function of time for various n are shown in Figures

6.6 and 6.7. Figures 6.8 and 6.9 provide some comparisons of the

conjugate gradient and steepest descent methods. Since the

converg ence characteristic s of the approximating controls and the

corresponding trajectories in Region III depend mainly on the choice

of or the exit corner, only their convergence characteristics in

Region I are considered. Figures 6.10 and 6.11, respective ly, show

the approximating controls u
11
(t) for various n computed using the

penalty function approach and the corresponding trajectories.
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Figure 6.6. Gradients of performance functiona l, Region I
10’
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Figure 6.8. Comparison of approximating control sequences
in Region I by method of conjugate gradient.

and method of steep est descent

.46 
steepest descent

— — — A —— — conjugate gradient.
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optimal solution

.42

Iteration 9

1.40 

_ _ _  

_

• .38 Iteration 5

.
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Figure 6.9. Deviation of approximating controls
- from optimal by method of conjugate

• gradients and method of steepest
descent

10’
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SECTION VII

MAXD(UM RANGE OF A R~2~TRY VEHICTI WITh SKIP ALTI~~~ COIISThAINT •

7.1 Problem Description

Suppose it i. desired to obtain an optimal angle of attack program

for a. ttontbrusting reent ry vehic le so that its range is maximized for

some given initial velocity and position while not exceeding a certain

altitude limit once it has gotten below the limited altitude. Th.

altitude limitation occurs in many practical situations whenever

maneuverability of the vehicle i. required since at high altitudes the

air is too thin to provide sufficient aerodynamic force.. The

parameters used in this problem will be selected to resemble a typical

real situation.

• 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ _ 

zero lift - 

-

• x2 = 200,000 feet 
~~~~~~~ u

/ 7

~ .1.JX4 3

Terminal surface x
x2 = 70,000 feet

Earth

‘A
Figure 7.1. Geometry of the reentry vehicle problem
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I
The earth will be considered as spherical and non-rotating. This

state varia ble constraint control problem may be form ulated as follows:
Let 21 be the range along the earth; x2 be the altitude of the vehicle;
x3 be it. velocity; and 2

4 be the flight path angl. relative to local

horizontal . The conatraini~g surface is

g(x) x2(t) — 200,000 feet (7.1)

and suppose that the terminal sur face is

$(x) 70,000 feeii. — x2(t ) (7.2)

The performance functional to be minimized is

• ECu) = $(x (tf ))

= _x1(t f ) (7.3)

where t~, i. the time when the vehicle is at an altitude of 70,000 feet.
The motion of the vehicle is given by the following equations:

dx1 
_______

1r 1+x2,R
c08 24

~~.-=x3
sin x4

(7.4)
~~~~s _(.274+1.8 sin2u)Ø4~~~ _ gs in x4

= .6 sin 2ux, ~~ - cos 24 + cos x4

where
2

g, the local gravity a 32.2
(~~ç)

65

- 
- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~



_ _ _ _  

~~~~~~~~~~~~~

—-.- -

~~

---

~~

~~, the atmospheric density a .00238 exp (_xl2le,000) slugs/ft3

I, the rsdius of eart ha2.l x 10~ feet

$ a the effective surface in ft2

m a the mass of the vehicle in slugs

Let t0a0 and the initial conditions be •1
x.~(O) = 0 feet

x (o) = 340,000 feet2
x
3
(0) = 28,000 feet/second

24(0) = -.14 radians.

7.2 Analysis for Numerical Computation

The Haniltonian associated with this problem is

H(x ,A ,u) = 
~ [~ +~~~i~] 

cos + ~ 23 sin x4

- )~t(.274 + 1.8 ein2u)px~ ~~ + g sin x4)

+ X4 [.6 sin 2upx3 ~~~~ - 008 + R+x2 
cos 2

4] 
(7.6)

and therefore the coatate equations along the interior arcs, or Regions

I and III , are - •

dX1
= 0

= ~~~ ., 
cos X

4 
P 

- ~
3 

((.274 + 1.8 sin2u)x~ ~~ p124,000

+ 2g sin x4/(R+x2)) + x{.6 sin 2ux
3 ~~ p/24,000

- x
~
(R+x2) + (7.?)

• 

__ _ _  

_ _ _ _ _
• 
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d).
a -A1 co. x4/(1+x~/R) 

- A2 sin x4 + 5(.274+1.8 sin2u)px
3 
S/a

~ 
g cos x4 coa x4

- A 4 ~~~~~~~~~~~~~~~~~~~~~~~~~~~

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

~ 
~g ein x4 x3 sin x4

-

• 

- Ji [  x3 
- R+x2

In view of Equation (5.34 ) and that $(x) = 
~~ 

and $(x) = 70,000 feet -

at the terminal time tf
X1(t f ) = —1

2 f (7.8)

A
3
(tf)=0

A4(tf) = 0

• According to Equations (5.36) and (5.53) we have for the gradient and
• Hessian of the performance functional, respectively,

~~(u) = -X~px~ ~~ (1.8 sin 2u) + X4pX
3 ~~ (1.2 Co. 2u) (7.9)

7(u) = -X~ix ~ 
.
~~ (3.6 cos 2u) - X4px3 ~~ (2.4 sin 2u) (7.10)

where an approximation baa been made for the Hessian as discussed in

Section V.

On the boundar y arc , or Region II , accordi ng to (5.4), we have
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g(x) = x2 - 200,000 feet a 0 (7.11)

M~~
=x,sin x 4 = o (7.12)

(7.13)

Equation (7.12) implie , that x4 = 0, and consequently, it follows from
Equation (7.13),

.
~~~

= .6sin 2uDx,~~~
_ L..cos x4+? cos x4j =0 (7.14)

3 2 x4=0

Therefore, the control along the boundary arc is given by

u = ~ sin 1 
- /.6px~ (7.15)

L
and the motion is given by

2
3a l+X2~

/1
~

a 0
(7.16)

• 
= -(.274 + 1.8 sin2u)px~ ~~

• W a O

It follows from Equation (5.28) that the coetate equations for •

Region II are

I

— —• — — —.—
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~1
x3

.
~~~~~~~

_ )
~((.flk + 1.8 sin2u)x~~~ o/24 000~J

- )
4 [.6 sin 2ux, ~~~~ o/24,000 - x3

(~~x2J +

+ (A
3 

15  tan 2u - A4/x3)tx~ ~~~ ~ .6 sin 2u/24,000 (7.17)

+ 4/(R+x2)2 
- 21/(R4x2))

+ x3(.274 ~ 1.8 sin
2u)gix

3~~

- X4(.6 sin 2up s g/x~ +. 1/(R.x2)~

• - (A
3 

1.5 tan 2u - A4/x,)[1.2 sin 2upx, ~~ +

• 
• 

dA4
~~— = - A 2x3 + A ,g

By Equations (5.30) and (3.31) and the fact that x4(t~) a 0, the Jump.

of the costate at the enter ing corner axe governed by

A1(t~) a

A2(t~) 
‘~ 

+

A3(t )  a A3(t~) (7.18)

- 

• A4(t~) a + A4(t~)

+ a +

) 69
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It follows from the last two expressions that

A ( t )~~~~~ 7~I 1
L ~l ii 4 1  I,.

• dx — (tJX
3~~~

1

as a function of the state and costate vectors is not explicit, and

a trial-and-error procedur. such as the one described in S.ctiofl V will

be used, From the pnysic. of the problem, it is clear that in order to

minimize the drag force (the first term on the right side of Equation

(7.4)), and consequently the greater range the vehicle would travel,

it i. desirable for the vehicle to make it. flight at the limit

altitude ot 200,000 feet for some period of time, provided that it has

sufficient energy to return to that altitude after it has been below

200,000 feet once. This fact will serve as a guide in selecting the

initial estimate of the control in Region I.

The continui ty property of the state variabl , implies that

x4(t~) = 0 which in turn implies that the admissible controls must

have their corresponding trajectories tan6ent to the constraining

surface at the entering corner . Consequently, the set of admiesible

controls Q does not possess the same property as the problem

considered in Section VI, where the admissible set of controls i.

convex. tioreover, it is true that every neighborhood of an admissible

control has at least one non-admissible control. We can justify this

statement heuristically as follows: If u is an admissible control,

then we can select a control v so that v (t ) a u(t ) for t £ (0,t1—6),

-

~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~ _ _ _



~~~~~ ~~~~~~~~ -——— •— — -•-——-~—.——~ 

6 ) 0, and for t > t1-6 select v so that the corresponding trajectory

is not tangent to the constraining sur face (i.e., v is not an

admissible control). Since 6 is arbitra ry , I ~u—v~ may be made

arbitrarily small.

From the computational viewpoint it is sometimes advantageous,

such as in this problem, to relax the requirement that the estimated

control Uk for each iteration be admissible. In other words ,

computational time may be considerably reduced if the opti mal control

u i. approached along a “path” whose intermediate “points” may be
• nonadmiseible conceptually as shown in Figure 7.2.

-

/ 1\T~JL.~..,’
- )

,
f _ . f \ _ . _ ~___ .~- 

L

~
cy

~~~

J 
\~~/ %

The set of
— admissible controls Q

Figure 7.2. Illustration of the path leading to optimal control u

Let us now make this statement specific. Let the modified entering

time t1 be the smallest t that satisfies either one of the following

two conditions

• Ci) x2(t ) a 200,000 feet
dx4~~~~• (ii) x4(t ) .O a n d .~~— a O

•
• The flight path angle vanishes also before the pull up.

— 

- 
- -‘ 
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The adaptation of these two conditions to the computer program is

simple. Denote the set of admissible controls for the kth iteration by

and let

= Cu:x4(t1 <4 and 200,000 - x2(t1) <5,000/k) (7.20)

The sequence of admissible control sets as defined above appr oache s Q

as k ~ 00.

It is wor thy to note that in Region I the problem of determining

~ that minimizes the performance functional is equivale nt to the

problem of maximizing for a fixed x1 in Region II, thereby

eliminating the computation of the trajectory in Region III on which

the performance functional is based.

7.3 Computational Results

The initial estimate of the controls for Regions I and III and

the exit time t2° are

u0
(t) for t £ (o,t11 as shown in Figure 7.4

u0(t) = .42 radians, t ~ tt2Itf]

40) 235 seconds.

The change in t2, At i~ made according to the following:

Ci) If the trajectory under the new estimated control does not

violate the constraining surface x2 - 200,000 = 0 in the kth iteration ,

then

(-2 k<4
• A t a ~~ -1 5 � k � 8

k > 8

• ________ 
-
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(ii) If the trajecto ry under the new estimated control violates

the constraining surface as shown below where A is the exi t corner in

the (k—1)st iteration and B is the last intersection of the trajectory

Ck under the new control and the constraining surface, then

distance between A and BAt
x3( 4~

)]
x2_200, 000aO

~~

Figure 7.3. Trajectory Ck violating constraining surface

Th. fourth order Runge-Xutta method was used in solving the state

and costate differential equations with step sizes dt = 1 for Regions

II and III and dt = .5 for Region I, where greater accur acy was

demanded, except for the small interval , slight ly before the

trajectory intersect , either the terminal surf ace or the constraining

sur face where dt a .01.

Figures 7.4 and 7.5, respectivel y, show the approximating

controls u~(t ) for various n computed by the conjugate gradient

method for Region I and Region III. As expected from physical

consideration , th. control program for the vehicle when it is above

— • 
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220,000 feet has only minute influence in the trajectory since the air

density is extr~.me]y small. During the ten iteration. , no significant

change. occurred in uk(t) for the first 30 seconds, which corresponds

to x2 greater than 220,000 feet , consequently the curve representing

• u10(t) for t < 30 may contain considerable amount of uncertainty. This

fact may be seen by examining the Hessian of the performance functional

in Figure 7.7 which has relatively small values for t < 30, since the

Hessian may be interpreted as weighti ng factors in the equations for

the determination of a and 0 in (3.10) and (3.8). The Hessian has

relatively large values in the vicinity of t = 55 which indicates that

the control program on the optimal trajectory during that period of

time is critical. The performance functional vs. n is given in

Figure 7.6, and it indicates that after the 8th iteration the changes

in the performance functional become very small in comparison with the

changes occurred in the earlier iterations. The computed results for

all the states after ten iterations are presented in Tables 7.1, 7.2,

and 7.3, and the costates are shDwn in Figure 7.8. The computed

results show a very close agreement with the optimality relationship

that

u (t) = ~ tan~~ ()~~
a. required by the Weierstraes condition.

74 

_ _  

1 -~

• - - -



~~~~~r • • —~~~~~~~~~~~~~• •  • -~~~~ 
- — “ —- • - - • • • - - • • - - • -~~~-• ~~ - —• ,,--—• • - - •- ••• - • —~~~ —~. *—--•--—— -•— -- - • - - -  •• -

• Figure 7.~~. The approximating controls, Region III
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Figure 7.6. Performance functional vs n~aber of iterations

1.90

/
/

A 

-•

‘
~~~ 1.8~

I
I

~~~~~~~~~~~~~~~~~~~~ 

: 

-

Ih bar of Iteration .

L

76 /
-—



— •___ u,— _5~~~~~~ I~OI •uI — ~~~~~ I a *. • - - ~~~~~~~~~‘ A ’ ” ’~~~~~~ • - - - - - -~~~~~~

Figure 7.7. The Hessian of the performance functional
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TABLE I

The dyu.~~es of the maxim~~ range prOWeaslIer 10 iter ation s , region I

7li gbt Patb
Time Range Altitude Velocity Angle

second.) (mile.) (l0~ feet) (l0~ ft /eec) _~~~%~~e~j
0 0.0 31+0.00 28.000 -8.0214
5 22.438 320.33 28.020 -7.9626

10 1+4.954 301.19 28.037 -7.9006
15 67.48? 281.99 28.050 -7.8319
20 90.049 262.98 28.051 -7.7491
25 112.63 21+4.20 28.031 -7.6365
30 135.21 223.79 27.967 -.7.4622
35 157.73 207.99 27.818 -7.1647
40 180.12 191.30 27.520 -6.6389
45 202.23 176.50 26.994 -3.7397
50 223.85 164.69 26.191 -4.3533
35 244.78 156.89 25.175 -2.5466
60 264.89 133.47 24.127 - .6427?
65 284.21 153.86 23.227 .96062
70 302.86 156.95 22.544 2.0435
75 321.04 161.54 22.053 2.6041
80 338.86 166.70 21.699 2.7499
85 356.43 171.78 21.428 2.631?
90 373.79 176.51 21.212 2.4488
95 391.00 180.83 21.031+ 2.2374

100 408.07 184.72 20.885 2.0100
105 425.03 188.15 20.737 1.7740
110 441.90 191.14 20.61+7 1.5338
115 458.68 193.68 20.548 1.2920
120 475.38 195.78 20.460 1.0500

• 125 492.01 197.43 20.379 .80862
130 308.58 198.65 20.304 .56854
135 525.09 199.45 20.233 .33703
11+0 541.55 199.86 20.167 .13610
144.4 555.98 199.96 20.111 .00001
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IABLE 2

The dynamics of the maximum range problem
after 10 iterations , region II

Time Range Velocity

((t—t1) seconds) (miles) (io~ ft/eec) -
0 555.98 20.111
5 572.33 20.025
10 588.60 19.938
15 604.81 19.852
20 620.95 19.765
25 637.01 19.67?
30 653.00 19.590
35 668.92 19.501
40 684.77 19.413

• 45 700.55 19.323
50 716.25 19.233
55 731.88 19.143
60 747.44 19.051
65 762.92 18.959
70 778.33 18.866
75 793.66 18.773
79.47 806.40 18.693

- • The entering time t1 = 144.4.
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TABLE 3

The dynamcis of the maximum range problem
after 10 iterations , region III

Time ~~~r Altitude Velocity Flight Path -

(t—t2)’ (R-R 2) ’  Angle
(seconds) (mile.) 

• 
(i0~ feet) (io~ ft/eec) ~~~~~~~~

0 0.0 200.00 18.693 0.0
50 11+8.50 198.90 17.776 - 0.20551

100 289.55 192.94 16.828 - 0.36930
150 422.13 183.95 15.663 - 0.62105
200 544.26 177.35 14.277 — 0.381+09
250 654.91 172.87 12.865 — 0.45921

• 300 754.10 165.86 11.446 - 0.88688
350 841.25 156.10 9.8873 - 1.1610
1+00 915.13 146.37 8.2082 - 1.3492
1+50 973.31 133.78 6.5411 — 2.1070
500 1022.1 121.71+ 4.9259 - 3.7584
550 1055.9 103.1+7 3.3970 - 6.8382
600 1077.6 82.1120 2.0021+ -12.231
628.75 1085.1 70.000 1.3706 —19.130

‘Zxit ti.e t2 ” 79.47+ 144.4

~~I$a~g. at exit time B2 a 806.’eo miles

/
1 81
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SECTION VIII

CONCLUSIONS AND RD!ARKS

• From the computational experienc , based on the problem. studied

above, the method of conjugate gradients has been shown to be a useful

• computational tool in solving both linear and nonlinear optimal control

• problems with state variable constraint. The method is basically

simple and relatively easy to program. Although the search directions

are only locally conjugate with respect to the second Frechet

derivative of the performance functional , they .till provide

satisfactory convergence. The results presented in Section VI indicate

that the conjugate gradient method has a higher rate of convergence

in comparison with the method of steepest descent , but the difference

in the rate of convergence is less pronounced for this constraint

problem, as compared with the cases of unconstrained problems reported

by other investigators tl3~, t1ze~), bec*uae of the following reason s :

(i) The set of admissible controls Q is restricted, and consequently

only small step size in the search direction is permitted in Region I.

That is1 the convergence is along the expanding sequence of sets

11 Q) instead of expanding sequenc. of eubspaces. (ii) The rate

of convergence in Region III depends heavily on the choice of the exit

corner in each iteration. A considerable portion of computational

time in each iteration i. devoted to the determination of the optimum

step size in the search (a1thoug~ the exact opt imum is not essential )

and the determination of jumps in the coetate at the entering corner.

To assure that the sequence of approximating controls converges

to optimum, it suffices to have the initial estimated control so that
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the second Prechet deitv.tive evaluated ther. is positive definite.

The method of conj ugate gradient., like many other opti.iaation

techniques , cannot differentiate local minimum from absolute .iMmum,

and consequent ly the initial estimated control must be selected

cautiou sly unless the given problem is 1~ own to have only one minimum.

In converting the constraint control problem to an equivalent

unconstrained one by introducing a penalty function, the computational

process involves more time in contrast to the approach which considers

the constraints directly, but it requires less programing work. Its

effectiveness depends heavily on the proper choice of the function ii.

We have treated only the control systems that are time-invarying, but

the extension of the conjugate gradient method to encompass the time-

varying systems is straightforward.
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